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Abstract
Multiple kernel learning (MKL) for feature selection utilizes kernels to explore complex properties of features, which has
been shown to be among the most effective for feature selection. To perform feature selection, a natural way is to use the
l0-norm to get sparse solutions. However, the optimization problem involving l0-norm is NP-hard. Therefore, previous MKL
methods typically utilize a l1-norm to get sparse kernel combinations. However, the l1-norm, as a convex approximation of
l0-norm, sometimes cannot attain the desired solution of the l0-norm regularizer problem and may lead to prediction accuracy
loss. In contrast, various non-convex approximations of l0-norm have been proposed and perform better in many linear
feature selection methods. In this paper, we propose a novel l0-norm based MKLmethod (l0-MKL) for feature selection with
non-convex approximations constraint on kernel combination coefficients to select features automatically. Considering the
better empirical performance of indefinite kernels than positive kernels, our l0-MKL is built on the primal form of multiple
indefinite kernel learning for feature selection. The non-convex optimization problem of l0-MKL is further refumated as a
difference of convex functions (DC) programming and solved by DC algorithm (DCA). Experiments on real-world datasets
demonstrate that l0-MKL is superior to some related state-of-the-art methods in both feature selection and classification
performance.

Keywords l0-norm · Feature selection · Multiple kernel learning · DC programming

1 Introduction

Feature selection is one of fundamental problems in
machine learning. The goals of feature selection are
to remove the irrelevant and redundant features, reduce
store space and execution time, and avoid the course
of dimensionality while preserving or improving the
prediction performance [13]. In general, feature selection
methods can be divided into three categories: “filter”
which ranks the features according to some discrimination
measures independent of learning algorithms, “wrapper”
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which evaluates the features by learning algorithms, and
“embedded” which embeds feature selection into learning
process. Generally, the wrapper approach is considered to
produce better feature subsets but run much more slowly
than a filter for a specific learning algorithm. Embedded
methods do not separate the learning from the feature
selection part and tend to be between filters and wrappers in
terms of computational complexity.

This paper focuses on an embedded method for feature
selection. For the feature selection purpose, a natural way is
to use zero norm (denoted l0 or | · |0) to deal with sparsity.
The zero norm of a vector is defined as the number of its
non-zero components. However, the optimization problem
involving l0-norm is NP-hard and hence is not practical for
large scale problems. During the last two decades, works
in feature selection with the l0-norm can be divided into
three categories according to the way to treat the zero
norm: convex approximation, non-convex approximation
and direct solutions.

“Convex approximation” creates a smoothed convex
approximation such as l1-norm regularization and has been
studied extensively. Least absolute shrinkage and selection
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operator (LASSO) method penalized the regression coef-
ficients in linear regression with the l1 penalty, shrinking
many of them to zero [21]. l1-SVM was then presented for
feature selection in the context of SVM [1]. Elastic net reg-
ularization, which is a combination of l1-norm and l2-norm,
can form a more structured regularization and obtain bet-
ter prediction accuracy [26]. To perform nonlinear feature
selection, the feature selection problem of gene expression
data was transformed into a multiple parameter learning
problem based on multiple kernel support vector machine
[3]. Varma and Babu proposed a more generalized MKL
scheme for feature selection where the combination of base
kernels can be generalized to be nonlinear [22]. Instead of
using positive definite kernels, Xue et al. utilized indefinite
kernels to select features based on the primal framework
of indefinite kernel support vector machine [25]. Among
these l1-norm based methods, MKL techniques have been
shown to be amongst the most effective for nonlinear fea-
ture selection [22, 25]. Gribonval and Nielsen have proven
that, under suitable assumptions, a solution of the l0-norm
regularizer problem over a polyhedral set can be obtained by
solving the l1-norm regularizer problem [8]. However, these
assumptions may not be satisfied in many cases. As a result,
l1-norm may fail to live up to the desired feature selection
property, leading to prediction accuracy loss by shrinking
both relevant and irrelevant features to zero.

Instead of using l1-norm, “non-convex approximation”
attempts to approximate l0-norm by a non-convex continu-
ous function. Various non-convex regularizations have been
developed in several works in different contexts, most of
them are for feature selection in SVM or regression. For
example, the concave exponential approximation [1, 12, 14,
16, 19], the smoothly clipped absolute deviation [6, 13],
the log penalty method [2], and the capped l1-norm [17,
18]. However, these non-convex regularizations for feature
selection are mainly based on linear methods, such as lin-
ear SVM. Unlike MKL methods, they may not be able to
uncover complicated properties of the features and can be
greatly limited.

In the third category of “direct solutions”, l0-norm is
directly solved via auxiliary functions. For example, the
intractable l2/l0 optimization was solved by simple iterative
algorithms with a Lipschitz auxiliary function [15]. And the
l0-norm regularized problem was reformulated as a contin-
uous nonconvex program with an exact penalty technique
[11]. However, the additional parameters introduced by aux-
iliary functions may negatively affect the generalization
abililty and increase the time complexity of the algorithms.

In this paper, we propose a novel non-convex approxi-
mation based l0-norm MKL method for feature selection.
Considering the superiority of indefinite kernels, our l0-
MKL is built on the primal form of multiple indefinite
kernel learning for feature selection. Concretely, l0-MKL

uses an indefinite base kernel to represent each feature
respectively and a l0-norm constraint is then enforced on
kernel combination coefficients in order to select features
automatically. The challenging problem of l0-norm is firstly
approximated by the optimization of non-convex approx-
imations and then reformulated as a difference of convex
functions (DC) programming. An iteratively two step algo-
rithm is further proposed to solve the non-convex optimiza-
tion problem. Experimental results on real-world datasets
have shown that l0-MKL outperforms some related methods
in terms of feature selection and classification.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the related works on sparse regular-
ization based feature selection. In Section 3, we present the
proposed l0-MKLmethod. Section 4 describes the optimiza-
tion algorithm for solving our model. Section 5 provides the
experimental results. Section 6 concludes this paper.

2 Related work

In this section we will briefly describe the l1-normMKLmeth-
ods for feature selection and some non-convex approxi-
mation based methods in linear feature selection. Given a
training set {(xi , yi)}ni=1, where xi ∈ R

M is a training
sample and yi ∈ {−1, +1} is the corresponding class label.

2.1 l1-norm basedMKL

MKLmethods firstly apply a base kernel km on each feature
of the samples and then combines these kernels into a kernel
combination [4]:

k
(
xi, xj

) =
M∑

m=1

dmkm

(
xi,m, xj,m

)
, dm ≥ 0 (1)

where xi,m denotes the mth feature of xi and dm represents
the coefficient of the kernel km.

MKL methods aim to learn a sparse combination of the
kernels so that the feature can be selected naturally and l1-
norm regularizer is used on d to obtain a sparse solution [3,
4, 22].

min
α,d

1

2

n∑

i,j=1

αiαjyiyj k(xi, xj ) −
n∑

i=1

αi + λ‖d‖1

s.t dm ≥ 0, m = 1, · · · , M

0 ≤ αi ≤ C
n∑

i=1

yiαi = 0, i = 1, · · · , n (2)

where α is the Lagrange multiplier, C > 0 is the penalty
parameter of SVM and λ > 0 is the regularization parameter
controlling sparsity of d.
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2.2 Non-convex approximation basedmethods

The l0-norm is defined as:

‖w‖0 =
n∑

i=1

sign(wi)

with sign(wi) =
{
0 wi = 0
1 wi �= 0

Linear l0-SVM can be formulated as:

min
w,b,ξ

‖w‖0 + C

n∑

i=1

ξi

s.t . yi(w
T xi + b) ≥ 1 − ξi

ξi ≥ 0, i = 1, · · · , n (3)

Equation 3 is the standard SVM formulation but with
the l2-norm regularization on w replaced by l0-norm
regularization to enforce sparsity on w. The components
of w corresponds to the features of xi and can be used to
select features. Concretely, a feature can be discarded when
the corresponding component of w equals zero. In order to
make (3) tractable, the l0-norm regularization is typically
approximated by various non-convex approximations [12].
And Table 1 lists some of the effective non-convex
approximations of l0-norm.

Where for t ∈ R, δθ (t) is the step function and θ > 0 is
a parameter controlling the tightness of approximation.

As a typical embedded method for feature selection, l0-
SVM can eliminate features based on linear SVM classifier.
However, l0-SVM simply selects features according to the
component value of w and ignores complex properties
of features. Though Neumann et al. use the concave
exponential approximation of l0-norm to perform feature
selection in nonlinear SVM classifiers, the nonlinearities
are limited to explicit quadratic feature map or gaussian
kernel [16]. When using other feature maps, their methods
are no longer applicable. In our method, the feature maps
correspond to indefinite kernels and there is a much larger
class of kernel functions available.

Table 1 l0-norm approximation functions δ

Approximation Function δ

Exp [1, 12, 14, 16, 19] δθ (t) = 1 − e−θ |t |

Log [2] δθ (t) = log(1+θ |t |)
log(1+θ)

Capped-l1 [10, 18] δθ (t) = min{1, θ |t |}

SCAD [6] δθ (t) =

⎧
⎪⎨

⎪⎩

2θ
a+1 |t | |t | ≤ 1

θ
−θ2t2+2aθ |t |−1

a2−1
1
θ

< |t | < a
θ

1 |t | ≥ a
θ

3 l0-MKL

The nonlinear SVMmaps the training samples from the input
space into a higher-dimensional feature space via a mapping
function ϕ and the nonlinear l0-SVM can be formulated as:

min
w,b,ξ

‖w‖0 + C

n∑

i=1

ξi

s.t . yi(w
T ϕ(xi) + b) ≥ 1 − ξi

ξi ≥ 0, i = 1, · · · , n (4)

However, due to the non-convexity of l0-norm, (4) and its
dual form are not identical. Equation (2) is not suitable for
feature selection when l0-norm is used. Therefore, we build
our model based on the primal form of kernel SVM [9]. In
addition, Xue et al. have shown that indefinite kernels can
explore complex properties of feature and perform better
than positive definite kernels for feature selection [25]. As
a result, we use an indefinite base kernel to represent each
feature respectively and a l0-norm constraint to get sparse
kernel combination coefficients:

min
β,b,d

λ1β
T Kβ + λ2‖d‖0 +

n∑

i=1

max
(
0, 1 − yi(K

iβ + b)
)2

s.t dm ≥ 0,m = 1, · · · ,M (5)

In (5), it is worth noting that β is unconstrained which
is different to the Lagrange multiplier α in (2). The second
term is the l0-norm regularizer related to d. If the coefficient
dm equals to zero, it means that the corresponding feature
has no effect on the classification and can be discarded. The
last term is the smooth quadratic hinge loss function and K i

denotes the ith row of K .
Nevertheless, as indicated above, the minimization of l0-

norm is a NP-hard problem. As a result, we use continuous
sparse approximations of l0-norm in Table 1 to approximate
(5):

min
β,b,d

λ1β
T Kβ + λ2

M∑

i=1

δθ (di) +
n∑

i=1

max
(
0, 1 − yi(K

iβ + b)
)2

s.t dm ≥ 0,m = 1, · · · , M (6)

Compared to l1-norm based MKL methods, the proposed
l0-MKL has two advantages. Firstly, the non-convexity
of l0-norm can be approximated by various non-convex
approximations, which have better sparsity and achieve
higher classification accuracies than l1-norm. Secondly, we
construct l0-MKL on the the primal form of indefinite kernel
SVM and avoid the dual gap in the non-convex optimization
problem effectively.

Compared to non-convex approximation based linear
methods, the proposed l0-MKL can utilize kernels to
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explore complex properties of features and perform
nonlinear feature selection effectively.

4 Optimization algorithm

Firstly, we denote the objective function of l0-MKL as

F(β, b, d) = λ1β
T Kβ + λ2

M∑

i=1

δθ (di)

+
n∑

i=1

max
(
0, 1 − yi(K

iβ + b)
)2

(7)

We address (7) by developing an iteratively two step
optimization problem. Concretely, the SVM parameters
(β, b) are learnt when the kernel combination is held fixed
(Step 4) and then kernel combination is learnt by optimizing
over d while the SVM parameters (β, b) are held fixed (Step
5). This process is repeated until converges and the complete
algorithm for solving (7) is described in Algorithm 1.

4.1 DC programming and DCA

DC programming plays an important role in non-convex
programming and DCA is commonly used to solve the
smooth/non-smooth non-convex problems [5, 20, 23]. They
address general DC programs of the form:

inf{f (x) := g(x) − h(x) : x ∈ Rn} (8)

where the functions g and h are lower semicontinuous
proper convex functions defined on Rn and

inf f (x) ≥ −∞ (9)

DCA is based on local optimality conditions and duality
in DC programming. For simplicity, we omit the dual part

of DC programming and focus on how DCA is conducted.
The main original idea of DCA is simple, it consists in
approximating a DC program by a sequence of convex
programs: at each iteration, DCA approximates the concave
part −h at the current point by its affine majorization and
minimizes the resulting convex function to find a new point
[11]. The algorithm proceeds as Algorithm 2.

Where ∂h(xt ) is the gradient of h at point xt .
Algorithm 2 calculates the gradient of the concave part −h

(Step 3) and approximates it by its affine majorization to
convert the non-convex function to convex function (Step
4). The optimization problem in Step 4 of Algorithm 4 is a
convex program and can be solved easily.

4.2 Indefinite kernel SVM solved by DCA
(IKSVM-DCA)

When the coefficients d are fixed, (7) degenerates into a
non-convex problem of SVM with a single indefinite kernel
and its objective function is:

f (β, b) = λ1β
T Kβ +

∑n

i=1
max

(
0, 1 − yi(K

iβ + b)
)2

(10)

According to [24], the non-convex problem of (10) can
be reformulated as a DC programming equivalently due to the
favorable property of the spectra for indefinite kernel matri-
ces. Concretely, the objective function can be decomposed as

f (β, b) = g(β, b) − h(β, b)

with g(β, b) = λ1β
T (ρI )β +

∑n

i=1
max

(
0, 1 − yi(K

iβ + b)
)2

h(β, b) = λ1β
T (ρI − K)β (11)

where the positive number ρ satisfies the condition: ρ ≥ η

and the number η is the maximum eigenvalue of the kernel
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matrix K . As a result, the functions g(β, b) and h(β, b)

can both be guaranteed to be convex and (10) can be solved
by DCA. The detailed steps for solving (β, b) in (10) are
described in Algorithm 3.

Algorithm 3 firstly performs eigenvalue decomposition
on K to find the maximum eigenvalue for DC decompo-
sition (Step 1–2). Within the loop, Algorithm 3 calculates
the gradient of the convex function h (Step 5) and then
solves nonconvex problem by approximating h(β, b) with
its affine minorization (Step 6).

4.3 Non-convex approximation solved by DCA
(NC-DCA)

When (β, b) are fixed, (7) can be reformulated as:

f (d) =
n∑

i=1

diγi + λ2

M∑

i=1

δθ (di)

+
n∑

i=1

max
(
0, 1 − yi

(
θ id + b

))2
(12)

where γ = [λ1βT K1β, . . . , λ1β
T KMβ]T , θ =

[K1β, · · · , KMβ] and θ i represents the ith row of θ .
According to [10], δθ is a DC function which can be

decomposed as

δθ (di) = ϕθ (di) − φθ (di)

s.t . di ≥ 0, i = 1, ..., M (13)

where ϕθ , φθ are convex functions. Therefore, (12) can be
further decomposed as:

f (d) = g(d) − h(d)

with g(d)=
n∑

i=1

diγi +
n∑

i=1

max
(
0, 1 − yi

(
θ id + b

))2

+λ2

M∑

i=1

ϕθ (di)

h(d) = λ2

M∑

i=1

φθ (di) (14)

where the functions g(d) and h(d) are both convex.
Table 2 lists the first decomposition of δθ (di) and the

gradients of the second decomposition.
The optimization problem of (12) is a DC programming

and can be solved by DCA. The detailed steps described in
Algorithm 4.

When (β, b) are fixed, Algorithm 4 calculates the
gradient ∂h(dk) of the convex function h according to (14)
and Table 2 (Step 3). The optimization problem over the
kernel combination coefficients d in Step 4 is a convex
program and can be solved easily.

4.4 Convergence and complexity analysis

In this section, we will present a theoretical analysis for the
convergence of l0-MKL.

Proposition 1 For the sequence {dk}, we have

(g − h)(dk) − (g − h)(dk+1) ≥ τ‖dk − dk+1‖2,
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Table 2 The decomposition of
functions δ = ϕ−φ and ∂φ(di) Approximation Function ϕ ∂φ(di)

Exp [1, 12, 14, 16, 19] θ |di | sign(di)θ(1 − e−θ |di |)
Log [2] θ |di |

log(1+θ)
sign(di)

θ2|di |
log(1+θ)(1+θ |di |)

Capped-l1 [10, 18] θ |di |
{
0 di ≤ 1

θ

sign(di)θ otherwise

SCAD [6] 2θ
a+1 |di |

⎧
⎪⎨

⎪⎩

0 |di | ≤ 1
θ

sign(di)
2θ(θ |di |−1)

a2−1
1
θ

< |di | < a
θ

sign(di)
2θ

a+1 |di | ≥ a
θ

the equality holds if and only if τ‖dk − dk+1‖2 = 0, where
τ is a positive parameter to make functions g and h strongly
convex.

Proof This is consequence of DCA’s convergence theorem
for a general DC program [20].

Proposition 2 For the sequence {(βk, bk, dk)} , we have
F(βk+1, bk+1, dk+1) ≤ F(βk, bk, dk),

that is, the objective function F(βk, bk, dk) is strictly
monotonic decreasing along the solution sequence.

Proof From Proposition 1, the objective function F is
decreasing when SVM parameters are held fixed. When
the coefficients d are fixed, l0-MKL degenerates into an
indefinite kernel SVM and the objective function F is also
decreasing according to [24]. Thus, the whole algorithm
l0-MKL is decreasing along the solution sequence.

When F(βk, bk, dk) = F(βk+1, bk+1, dk+1) comes
true, the algorithm l0-MKL can converge to a stationary
point.

As stated in Algorithm 1, l0-MKL is solved iteratively.
When SVM coefficients (β t , bt ) are calculated in each
iteration (Step 4), it takes O(n2 + T1 ∗ n2), where n denotes

Table 3 Datasets description

Datasets #Num #Feature

ALLAML 72 7129

Colon 62 2000

Gli 85 85 22283

Prostate GE 102 5966

Central Nervous System 60 7129

Lung Cancer 181 12533

Leukemia 72 7070

Dbworld 64 4702

Isolet 120 617

Glioma 21 4434

Carcinom 34 9182

the number of samples and T1 denotes the number of
iterations in Algorithm 3. Similarly, when calculating kernel
combination coefficients d t (Step 5), it takes O(T2 ∗ m2),
where m denotes the number of features and T2 denotes the
number of iterations in Algorithm 4. In summary, the total
complexity isO(T ∗(T1∗n2+T2∗m2)), where T is supposed
to be the maximum number of iterations of Algorithm 1.
Since max(T , T1, T2) 	 m and n, l0-MKL algorithm’s time
complexity is O(m2 + n2).

5 Experiments

We conduct a series of experiments on several real-world
datasets to compare our l0-MKL to some related state-of-
the-art algorithms.

5.1 Experimental setup

We select eleven datasets from three different reposi-
tories for experiments: (a) eight datasets from a fea-
ture selection repository,1 namely ALLAML, Colon,
Gli 85, Prostate GE, Leukemia, Isolet, Glioma, Carci-
nom; (b) two binary datasets from an online reposi-
tory2 of high-dimensional biomedical datasets, namely
Central Nervous System, Lung Cancer; (c) one dataset
Dbworld from UCI Machine Learning Repository. Table 3
lists a brief description of these datasets, including the
number of samples and the number of features in each
sample.

We randomly divide the samples into two non-
overlapping training and testing sets which contain almost
half of the samples in each class. The processes are repeated
ten times to generate ten independent runs for each dataset
and then the average results are reported. Since the three
datasets Isolet, Glioma and Carcinom are designed for
multi-class classification , we choose the first two classes.

The optimization problems in line 6 of Algorithm 3 and
line 4 of Algorithm 4 are convex programs. Both of them

1http://featureselection.asu.edu/datasets.php
2http://datam.i2r.a-star.edu.sg/datasets/krbd/

http://featureselection.asu.edu/datasets.php
http://datam.i2r.a-star.edu.sg/datasets/krbd/
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Table 4 Classification accuracies and the number of selected features (mean (#dimension)) of each compared algorithm on real-world datasets

PIE-SVM CAP-SVM EP-SVM MIK-FS l0-MKL

ALLAML 93.71 (4) 92.86 (6) 95.71 (93) 97.14 (18) 98.00 (7)

Colon 84.84 (6) 85.16 (7) 87.10 (61) 87.74 (215.7) 87.74(14)

Gli 85 77.61 (6) 77.61 (6) 81.43 (86) 78.09 (14) 82.14 (10)

Prostate GE 95.88 (7) 95.68 (11) 95.49 (12) 95.88 (8) 96.28 (8)

Central Nervous System 72.07 (12) 72.07 (12) 70.34 (10) 75.52(17) 79.31 (20)

Lung Cancer 98.67 (12) 98.56 (11) 99.44 (91) 99.89 (46) 99.78 (22)

Leukemia 96.00 (11) 96.29 (11) 96.86 (54) 97.71 (1426) 97.71 (7)

Dbworld 84.52 (14) 85.49 (13) 91.29 (22) 90.00 (11) 90.97 (9)

Isolet 98.67 (3) 99.00 (5) 99.00 (10) 100.00 (9) 100.00 (9)

Glioma 83.00 (2) 82.00 (2) 84.00 (8) 90.00 (3) 96.00 (4)

Carcinom 79.41 (2) 80.00 (3) 81.76 (22) 91.70 (11) 91.77 (7)

can be solved by CVX [7]. And we conduct our experiments
on a Windows 7 machine with 8 GB memory and 3.00 GHz
CPU.

We compare the proposed l0-MKL with the following
algorithms:

– PIE-SVM [12]: Feature selection in SVM with the
concave exponential approximation regularizer.

– CAP-SVM [10]: Feature selection in SVM with the
capped l1-norm regularizer.

– EP-SVM [11]: An exact penalty approach for feature
selection via the l0-norm regularization problem.

– MIK-FS [25]: l1-norm based multiple indefinite kernel
learning for feature selection.

We use the capped l1-norm as the approximation of l0-
norm in our experiments. The indefinite sigmoid kernel
k = tanh(a · xi

T xj − r) is selected as the base feature
kernel for MIK-FS and l0-MKL. For l0-MKL and MIK-FS,
the hyperparameters and kernel parameters are chosen from
the set {10−2, 10−1, 1, 101, 102}. For EP-SVM, CAP-SVM
and PIE-SVM, the hyperparameters are chosen form the set

{2−6, · · · , 26} and the parameter θ is chosen from the set
the same as l0-MKL.

In training process, all the features are used for training.
Irrelevant features are discarded when the obtained kernel
combination coefficients are less than 10−5. In testing
process, only selected features are used for testing. In
addition, we can get the degree of importance of selected
features according to the kernel combination coefficients
and use specified number of features for testing.

5.2 Experimental results

Table 4 lists the average classification accuracies and
the corresponding number of selected features in each
compared algorithm on real-world datasets. The best results
are highlighted in bold. In terms of sparsity of solution, the
quality of non-convex approximations are comparable. All
the three algorithms (PIE-SVM, CAP-SVM and l0-MKL)
reduce considerably the number of selected features. And
they outperform l1-norm (MIK-FS) and auxiliary functions
based reformulation (EP-SVM), especially for Leukemia

Table 5 F1 score of each
compared algorithm on
real-world datasets

PIE-SVM CAP-SVM EP-SVM MIK-FS l0-MKL

ALLAML 95.12 95.18 97.03 97.16 97.87

Colon 79.29 79.79 81.58 80.82 82.93

Gli 85 36.76 36.76 58.42 64.80 69.12

Prostate GE 95.39 95.43 94.82 94.72 96.02

Central Nervous System 38.13 38.13 19.61 56.47 70.95

Lung Cancer 96.54 96.54 98.85 98.85 98.85

Leukemia 93.63 94.77 94.65 95.64 95.77

Dbworld 82.98 84.16 89.37 90.38 92.01

Isolet 98.85 98.85 98.85 100.00 100.00

Glioma 93.33 90.79 90.45 95.55 98.00

Carcinom 88.66 88.66 88.66 90.91 90.17
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Fig. 1 The above plots show classification accuracy (y-axis) versus number of selected features (x-axis) for our real-world datasets

and Colon. In terms of accuracies, our algorithm is the best.
Two nonlinear feature selection methods (MIK-FS and l0-
MKL) obviously outperform the other three linear SVM
methods, especially for Glioma and Carcinom. Overall,
linear methods with non-convex approximations can select
features effectively but tend to achieve low classification
accuracies. l1-norm MIK-FS can achieve high classification
accuracies but tends to select too many features. As a result,
considering sparsity of features and classification accuracies,
our method is superior to these state-of-the-art methods.

Table 5 lists the average F1 score in each compared algorithm
on real-world datasets. The best results are highlighted in
bold. In terms of F1 score, the proposed method outper-
forms others on most datasets except for Carcinom. On
Gli 85 and Central Nervous System, the proposed method
can achieve much higher scores than other methods.

Figure 1 shows the classification accuracies correspond-
ing to the specified number of features on real-world
datasets. The maximum number of selected feature is set
to 40. As shown in Fig. 1, our method is the strongest

performer in the large majority of cases, sometimes by a
substantial margin as in the case of GLOMA. While our
method is occasionally outperformed in the beginning when
the number of selected features is small, it either ties or
overtakes the leading method by the end in all datasets.

Figure 2 shows the difference value of objective function
F in l0-MKL during each iteration in Algorithm 1.
Obviously, l0-MKL converges rapidly within 10 iterations
on all the datasets, in spite of some fluctuations as in
ALLAML and Isolet.

In Table 6, the CPU time of each algorithm is listed on
every dataset and the last row is the average CPU time. From
Table 6, we can see that l0-MKL takes almost twice the
average time than CAP-SVM. This is because the proposed
algorithm is an iteratively two-step optimization problem.
But the outer loop converges quickly and it still runs faster
than EP-SVM.

The best parameters of the proposed method are listed in
Table 7, where a, r are the kernel parameters of indefinite
kernels and λ1, λ2 are the regularization parameters. θ is a
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Fig. 2 The above plots show the difference value of objective function (y-axis) versus iteration number (x-axis) for our real-world datasets

parameter controlling the tightness of approximation of l0-
norm and affects the performance in our experiments, so we
select it from the set {10−2, 10−1, 1, 101, 102} to improve
performance. In fact, the authors set θ = 5 in [1, 16], so we

have also conducted some experiments when setting θ = 5.
The corresponding results are inferior to the best results in
the previous parameter set. Therefore, θ = 5 is not the best
parameter for our model.

Table 6 CPU time of each
compared algorithm on
real-world datasets

CPU time (s) PIE-SVM CAP-SVM EP-SVM MIK-FS l0-MKL

ALLAML 26.06 6.71 47.69 16.48 8.79

Colon 2.29 1.83 8.34 9.50 4.56

Gli 85 16.83 18.40 28.59 29.12 49.41

Prostate GE 27.53 8.81 59.53 7.26 11.17

Central Nervous System 3.05 3.62 22.31 2.78 10.59

Lung Cancer 33.28 35.06 211.08 31.87 84.85

Leukemia 9.78 4.49 65.73 6.18 9.60

Dbworld 2.18 1.54 8.24 2.38 6.82

Isolet 2.64 1.61 5.83 1.68 8.58

Glioma 3.71 2.27 7.02 1.72 2.68

Carcinom 5.71 3.70 24.93 2.83 14.38

Average 12.10 8.00 44.48 10.16 19.22
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Table 7 Best parameters of
l0-MKL on real-world datasets Best Parameters a r λ1 λ2 θ

ALLAML 10 0.01 10 0.1 1

Colon 0.01 1 0.01 10 1

Gli 85 0.01 10 0.1 0.1 0.01

Prostate GE 0.1 0.01 0.1 0.1 1

Central Nervous System 0.01 1 0.1 0.1 1

Lung Cancer 0.01 1 0.01 10 0.01

Leukemia 0.01 0.1 0.01 0.01 0.01

Dbworld 0.1 0.1 1 1 0.1

Isolet 0.1 1 10 1 0.1

Glioma 1 10 10 1 1

Carcinom 1 0.01 1 10 1

6 Conclusion

We propose a novel non-convex approximation based l0-
norm MKL method for nonlinear feature selection. The
proposed method utilizes the advantages of non-convex
approximations of l0-norm to get sparsity in features as well
as the advantages of indefinite kernels to capture complex
properties of features in order to improve classification
performance. An iteratively two step algorithm is further
proposed to solve the non-convex optimization problem.
Concretely, the SVM parameters are learned by the DCA
method when the kernel combination is held fixed and
then kernel combination is learned by the DCA method
while the SVM parameters are held. Experimental results
on real-world datasets have shown that l0-MKL outperforms
some related methods in terms of sparsity of features and
classification accuracies.

There are two issues for future work.

• Choice of indefinite kernel: We present an overall
framework combining the advantages of non-convex
approximation and indefinite kernel and design an
efficient algorithm to solve the model. But the choice
of a good base indefinite kernel is still an open problem
and needs to be selected manually. As a result, how to
automatically select an appropriate kernel needs more
research.

• Optimization technique: In the paper, we apply a two-
stage algorithm to solve the non-convex optimizations
in the proposed models, which optimizes the coeffi-
cients of IKSVM and kernel combination by DCA
method alternately. However, DCA is time-consuming
when both the number of sample and features are large.
Therefore, how to accelerate l0-MKL by refining the
solving algorithms needs more systematic research.
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